

eCOLAB 4.0

“Innovative, collaborative and interoperable tools for improved higher education curricula on sustainable Industry 4.0 manufacturing”

Collaborative Exercise Proposal

**Co-funded by
the European Union**

Co-funded by the European Union. The opinions and views expressed are those of the authors and do not necessarily reflect those of the European Union or the Spanish Service for the Internationalisation of Education (SEPIE). Neither the European Union nor the SEPIE National Agency can be held responsible for them

VNIVERSIDAD
DE SALAMANCA

Politechnika Krakowska
im. Tadeusza Kościuszki

The Challenge

The proposal is to design a vehicle spoiler (Fig.1) whose size will be 180x740 mm², that will provide additional downforce to the vehicle at speeds between 80 and 180 km/h.

Figure 1. a. Sport car b. Rear spoiler detail c. Mechanism spoiler detail

The Spoiler support mechanism is a four-bar mechanism driven by a crank-rod mechanism (Fig.2). The mechanism will be capable of reaching four positions: folded, deployed and two intermediate positions.

Figure 2. a. at the front it can be seen the crank-rod mechanism b. General view of the support mechanism

The designation of the bars appears in figure 3 whose dimensions are (Table 1).

Important: Two options are presented, the full mechanism (real) and a simplified version of the mechanism, that can serve as a starting point; the student decides the strategy to follow

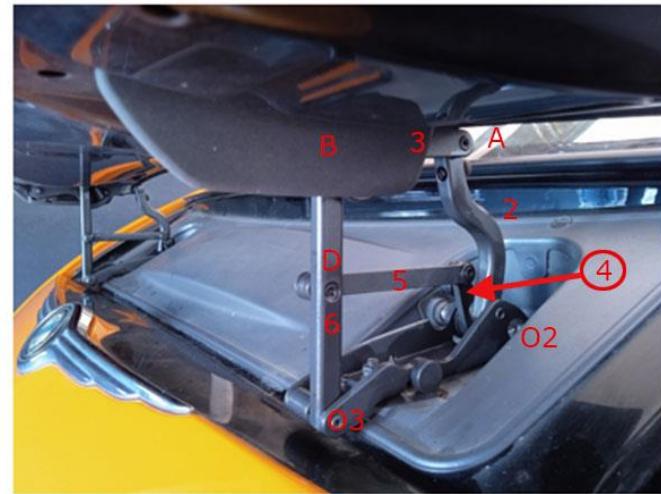


Figure 3. Designation of the bars

Bars	dimensions (mm)	Distances	length (mm)
r2	100	AB	60
r3:	130	O3-D	45
r4	35	O1O2 (original)	See Fig. 4
r5	80	O1O3(original)	See Fig. 4
r 6	100	O1O2= O1O3 (simplified model)	100

Table 1. Dimensions of the bars & Distances (Original mechanism & simplified model)

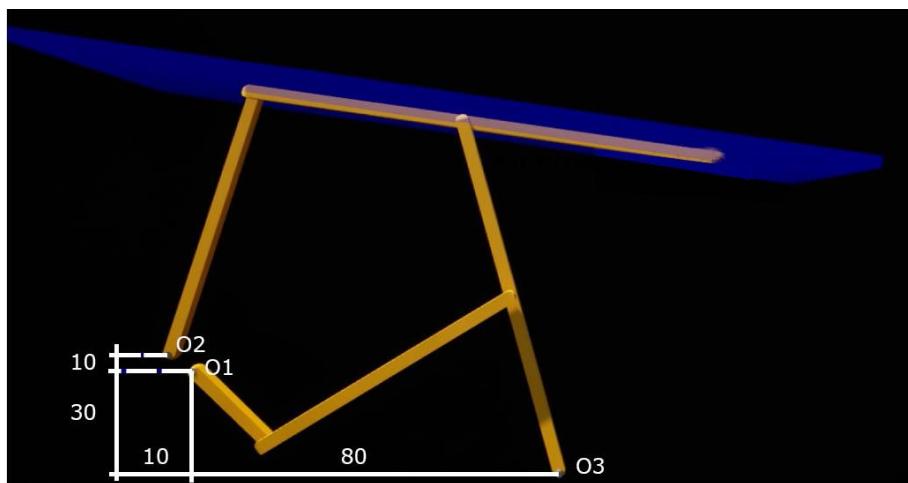


Figure 4. Distances between centres of rotation (points on the fixed element - chassis), mm.

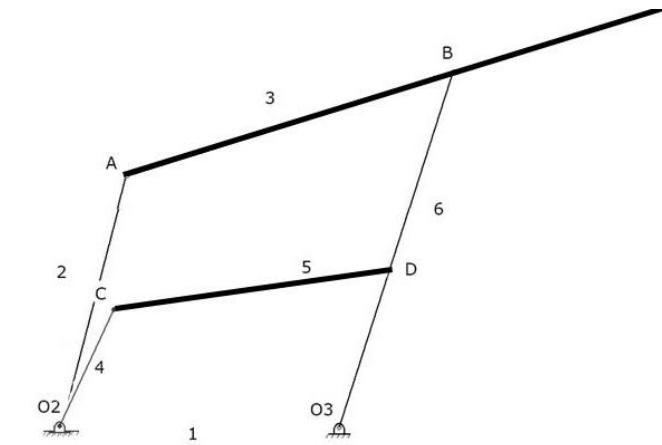


Figure 5. bone structure of the mechanism: simplified version

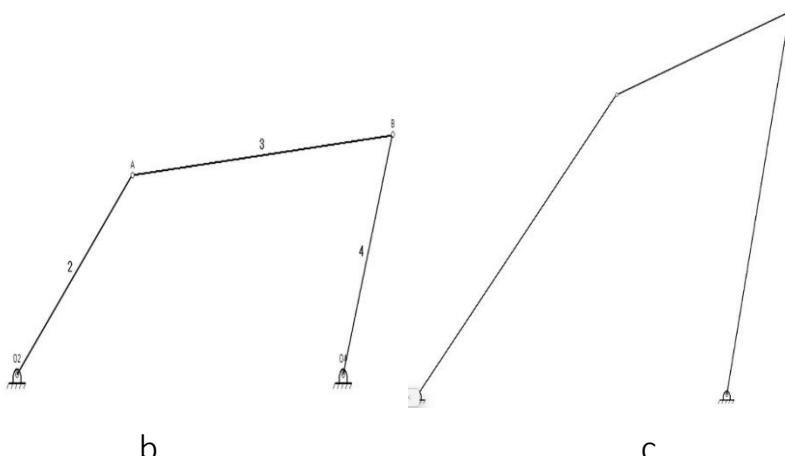


Figure 6.a bone structure of the mechanism: b. Driven mechanism c. Spoiler support structure

Remember, you can select the version to run: the full version or the simplified version.

Design aspects to be selected:

Compulsory task :

1. 3D design of the spoiler and the links of the mechanism
2. Kinematic simulation of the mechanism

Optional task:

A minimum of 1 task must be selected, optionally 2

1. Structural design of the links: Design the bars to withstand the dynamic load exerted by the air pressure on the spoiler
2. Aerodynamic design of the spoiler: Spoiler design: relates the force exerted by the air (pressure on the spoiler) as a function of the extreme positions that the mechanism can reach.
3. Material selection: Select the best material based on the strength-to-weight ratio.
4. Industrial design from an aesthetic perspective: Create an attractive product design aimed at the vehicle modification market.
5. Automation: mechanism actuation and control: Design the control system and/or the motorization of the mechanism
6. Manufacturing process, prototyping: Design the manufacturing process for the mechanism and/or evaluate manufacturing costs. Another alternative is to generate the G-code for 3D printers.
7. Digital Twin: Create a digital twin using Unreal Engine

Evaluation

- Teamwork dynamics and individual contributions.
- Problem-solving process
- Technical achievements.
- Collaborative work